Optimizing the Graph Minors Weak Structure Theorem
نویسندگان
چکیده
Abstract. One of the major results of [N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem. J. Combin. Theory Ser. B, 63(1):65–110, 1995], also known as the weak structure theorem, reveals the local structure of graphs excluding some graph as a minor: each such graph G either has small treewidth or contains the subdivision of a planar graph (a wall) that can be arranged in a flat manner inside G, given that some small set of vertices is removed. We prove an optimized version of that theorem where (i) the relation between the treewidth of the graph and the height of the wall is linear (thus best possible) and (ii) the number of vertices to be removed is minimized.
منابع مشابه
Graph minors and graphs on surfaces
Graph minors and the theory of graphs embedded in surfaces are fundamentally interconnected. Robertson and Seymour used graph minors to prove a generalization of the Kuratowski Theorem to arbitrary surfaces [37], while they also need surface embeddings in their Excluded Minor Theorem [45]. Various recent results related to graph minors and graphs on surfaces are presented.
متن کاملOperations which preserve path-width at most two
The number of excluded minors for the graphs with path-width at most two is too large. To give a practical characterization of the obstructions for path-width at most two, we introduce the concept reducibility. We describe some operations, which preserve path-width at most two, and reduce the excluded minors to smaller graphs. In this sense, there are ten graphs which are non-reducible and obst...
متن کاملThe excluded minor structure theorem, and linkages in large graphs of bounded tree-width
At the core of the Robertson-Seymour theory of graph minors lies a powerful structure theorem which captures, for any fixed graph H, the common structural features of all the graphs not containing H as a minor. Robertson and Seymour prove several versions of this theorem, each stressing some particular aspects needed at a corresponding stage of the proof of the main result of their theory, the ...
متن کاملComplete graph minors and the graph minor structure theorem
Article history: Received 19 May 2011 Available online xxxx
متن کاملLinear Connectivity Forces Large Complete Bipartite Minors: the Patch for the Large Tree-Width Case
The recent paper ‘Linear Connectivity Forces Large Complete Bipartite Minors’ by Böhme et al. relies on a structure theorem for graphs with no H-minor. The sketch provided of how to deduce this theorem from the work of Robertson and Seymour appears to be incomplete. To fill this gap, we modify the main proof of that paper to work with a mere restatement of Robertson and Seymour’s original resul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Discrete Math.
دوره 27 شماره
صفحات -
تاریخ انتشار 2013